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Bonding criteria for molecular orbitals in diatomic molecules are discussed. An 
orbital force criterion is shown to have several conceptual and practical 
advantages, providing a basis for the investigation of inter-relations among 
many of  the commonly employed criteria. 

It is found that interconsistency among those criteria is guaranteed, within the 
framework of  Koopmans '  Theorem, if the orbital energies are monotonic in the 
range (Re, oe). 

The application of the orbital force criterion to the second row homonuclear 
diatomics exhibits reasonable chemical trends concerning the valence-shell 
orbitals, as well as indications of a slightly antibonding nature of the inner 
orbitals. 
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1. Introduction 

The qualitative ideas concerning the nature of  the chemical bond date back to the 
early days of quantum chemistry. They include concepts such as bonding, non- 
bonding and antibonding orbitals, as well as dogmas such as the statement that an 
antibonding orbital is more antibonding than the corresponding bonding orbital 
is bonding. These concepts and ideas enabled a rationalization of  the basic chemical 
observations concerning the stability of simple molecules in t heir ground states. 

Progress in synthetic inorganic chemistry and in spectroscopy, and, to an even 
greater extent, the availability of large-scale computational facilities, have pointed 
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out several aspects in which the most naive theoretical concepts have to be revised. 
Consequently, several attempts to formulate improved concepts and bonding 
criteria were put forward, based for the most part on accurate HF calculations. 

In the present work we try to reveal the interrelations among the existing criteria 
and establish some of the conditions for their interconsiscency. After a brief review 
of the most common bonding criteria, we discuss a criterion of the orbital force type 
and examine its effectiveness in interpreting chemical facts and its relation to the 
other criteria reviewed. 

2. Bonding Criteria Based on Physical Observables 

The most obvious characteristics of a chemical bond are its length, vibrational 
frequency and dissociation energy. The changes in these properties, brought about 
by ionization, were suggested by Mulliken [1] as criteria for the bonding charac- 
teristics of the ionized electron. Denoting the bond length of the molecule by R e, 
and that of the ion by R +, the difference ARe=-R + - R  e will be positive for an 
ionization out of a bonding orbital, and negative for an ionization out of an anti- 
bonding orbital [2]. The applicability of this criterion was enhanced by the advent 
of photoelectron spectroscopy, which enables the study of the changes in bond 
lengths associated with the ionization of any electron in the molecule [3]. Simi- 
larly, the change of dissociation energy upon ionization, A D e - D  + - D e ,  should 
be positive for an antibonding electron and negative for a bonding electron. The 
agreement between this criterion, which examines a global property of the chemical 
bond, and the bond length criterion, which stresses the local properties of the bond 
at equilibrium, has been reviewed by Mulliken, who pointed out the discrepancy in 
the case of the alkali diatomic molecules. The naive expectation of a behaviour 
similar to that in H2, for which A R e > 0 and A D e < 0, in agreement with the simple 
idea about two bonding electrons being about twice as bonding as one, is not borne 
out by the experimentally and theoretically evaluated ADe>O for the alkali 
diatomics ! 

3. Bonding Criteria Depending on Theoretical Constructs 

The criteria belonging to the present category depend on quantities which are not 
directly observable, but which can be extracted out of the molecular wavefunction 
in a well defined way. Ruedenberg's [4] analysis of the chemical bond is a genuine 
and penetrating approach, which demonstrates that such criteria, when wisely 
used, can be of much benefit. However, since the full power of this approach, within 
the context of many-electron molecules, has not yet been elucidated, we shall 
concentrate on simpler, yet useful, schemes. 

3. l. Criteria Associated with Nodal Properties of  Molecular Orbitals 

The most naive characterization of bonding vs. antibonding orbitals is based on 
the absence or existence of a nodal surface bisecting the internuclear axis. Within 



Bonding Criteria for Diatomic Molecular Orbitals 175 

the simplest LCAO-MO framework, maximum overlap [5] and other orbital-shape 
criteria are often used to quantify this notion. These ideas are reflected in the 
dependence of the orbital energies on the internuclear separation and thus can be 
qualitatively understood on the basis of the united-atom separated-atoms correla- 
tion diagram. The following formulation was suggested by Eyring et al. : [6] "If an 
orbital maintains the same principal quantum number as the transition is made from 
the separated atoms to the united atom it is said to be a 'bonding orbital'. If the 
principal quantum number increases it is said to be an 'antibonding orbital'." 

The relevance of the united atom can be interpreted in relation to the existence of a 
nodal plane in the antibonding orbitals, which is closely related to the increase in 
the principal quantum number. From an energetic point of view, Eyring's criterion 
implies that for a bonding orbital the united atom orbital is lower than that in the 
separated atoms. This is relevant to the binding properties provided that mono- 
tonicity of e(R) is assumed, from which we immediately obtain that for a bonding 
orbital e(Re)<~,(oc). However, a non-monotonic behaviour of e(R) in the range 
0 < R < Re is frequently observed [7]. 

In the following section a more restricted, and therefore more generally valid, 
monotonicity assumption is shown to be relevant to the characterization of 
molecular orbitals with respect to their bonding properties. 

3.2, Criteria Based on Molecular Forces 

3.2.1. Additive Orbital Forces 

Berlin [8] suggested a partitioning of space into regions in which an electron 
exerts a binding force on the nuclei, and others in which it exerts a force in a direction 
which opposes binding. An orbital is designated binding if it is mostly localized in 
the binding region, and vice versa. 

These ideas were developed by Bader et al. [9] for many-electron systems. They 
pointed out that since the force on the nucleus A in the diatomic molecule AB is, 
according to the Hellmann-Feynman theorem, the expectation value of 

Ot2I/OR~-O[ZAZB/R- L ZA/rAi]/OR ( l )  
i=1 

it is appropriate to define additive orbital forces as 

, j -  zA. < j(i)lcos %/rLJ (2) 

They further introduced the quantity 

njR 2 

f J -  Z2 ~/j (3) 

where nj is the occupation number of the orbital qSj. 

From the Hellmann-Feynman theorem it follows that at equilibrium 

~ f~(R~) = ZB (4) 
i 
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and furthermore, 

lim f~(R)= 1 (5) 
R ~ a o  

Thus, an orbital is defined as binding iff~ > 1 and antibinding iff~ < 1, 

The computed values of f~, in Ref. [9], are in reasonable agreement with the 
traditionally accepted notions for the valence electrons, except that 3o- 0 appears 
as antibinding. However, the behaviour of the inner lo- o and lo-, orbitals is more 
difficult to accommodate within the conventional conceptual framework. 

3.2.2. Criterion of Orbital Forces 

The total energy in the unrestricted Hartree-Fock approximation is 

1 
E= E n hk+  E nk  k, (6) 

k ~ k ~ l  

hk and gk~ are the one-electron and two-electron integrals, nk is the occupation 
number of spin-orbital k, ranging between 0 and 1. The partial derivative with 
respect to ni, keeping the orbitals, as well as all other occupation numbers constant, 
is 

3E/ani=h~+ ~ nj.gu=-a ~ (7) 
j (~ i )  

Hence, Eq. (7) expresses the orbital energy as the differential contribution of an 
electron in orbital i to the total energy. This relation is motivated by the treatment 
of Slater et al. [10], but differs in (significant) details. 

The differential contribution of an electron in orbital i to the total force on a 
nucleus, F~- - 3 E / ~ R ,  can be defined in an analogous manner, 

- -  ~ , F / ~ n  i = 0 2 E / ~ n i  ~ R  -~ ~ s i / ~ R  ~ C' i (8) 

The ionization energy and the change in the force acting on a nucleus due to 
(vertical) ionization can, in principle, be expressed as -y~  e~(ni) dn~ and - f ~  a'~(n,) 
dn~, respectively. 

By neglecting the dependence of ~ on n~, which is due to the change in the form of 
the orbitals, one obtains Koopmans'  theorem, ~ , -  E - E  + . Introducing a similar 
approximation with respect to el, one obtains 

t "~ "~ + ", + =i = # E / c R -  eEi /oR =- F i - F (9) 

which can be interpreted as Koopmans '  approximation for the change in the 
force acting on a nucleus due to the ionization of an electron out of orbital i. Hence, 
e,~(R=) can be used as a binding criterion. An orbital is binding if it exerts a force on 
the nucleus in the direction of the other nflclens, i.e. e~ > 0, and antibinding if 
e.f <0. Although relaxation of the orbitals on ionization, as well as correlation 
effects, can modify the magnitude of the orbital force, they are less likely to upset 
its sign. 
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This criterion was recently discussed by Goscinski [11] with respect to the bond 
length shrinkage on ionization of core electrons in diatomics, which is examined 
in the following section. 

The orbital forces presented in Table 1 exhibit, for the most part, expected trends. 
The most remarkable observation is that the orbital forces in the 1% as well as in 
the 1 a u orbital for second row molecules are (slightly) antibinding! The different 
behaviour in He 2 indicates that this feature is a consequence of  the interaction with 
the valence-shell electrons, which deform the 1 a o orbital so as to push it away from 
the bonding region. Rather than a pair of virtually non-bonding orbitals of 
opposite nature, the 1% and la u orbitals both exert antibinding forces. It is noted 
that only towards the end of the second row the lo  0 and 1~ u orbitals become 
virtually non-bonding core orbitals. 

Table 1. Comparison of additive and Koopmans' orbital forces for homonuclear diatomics ~ 

H 2 He2 a Li  2 Be2 d B 2 C2 N2 0 2  F2 

e,b 0 .164 0 .0043 - -0 .0031  - -  - 0 . 0 3 4  - -0 .147  - -0 .131  - 0 . 0 9 0  - -  

lag ql o - -  0 .0415 0 .172 0.271 0.527 0.949 0 .9a6  0 .779 

~i ~ - -  - 0 . 0 0 4 4  - 0 . 0 0 4 1  - -  - 0 . 0 3 7  - 0 . 1 5 6  - 0 . 1 4 9  
lo- u 

t/i c - -  - -  0 .0387 0.168 0 .269 0 .519 0.888 0 .704 

el b - -  0 .0094  - -  0 .100 0 .185 0 .423 0.513 1 

2ag rh c - -  0 .0935 0 .327 0.638 1.224 2.195 2.254 1.533 

e~ b . . . . .  0.071 - 0 . 1 4 1  - -0 .145  - 0 . 1 9 9  - -  
2Gu e 

q~ - -  - -  - -  0 .065 - 0 . 1 3 6  - 0 . 2 3 7  - 0 . 3 7 9  - 0 . 3 9 8  - 0 . 1 0 5  

l n .  glb . . . .  0.077 0 .126 0 .264 0.223 - -  

~/i c - -  - -  - -  - -  0 .329 0 .612 0 .995 1.000 0 .772 

e~ b . . . . .  0 .0857 0 .137 - -  
3o'o c 

q~ . . . .  0 . I 2 3  0 .134 0 .323 

lno 8,b . . . . . . . .  0.195 - -  
thc . . . . . .  0 .327 0.411 

a A l l  values in atomic units. 
b Values of E i were computed using the HF results of  the following references: 

H 2 Ref .  [12] ,  H %  Ref .  [13] ,  C 2 Ref .  [ t 4 ] ,  N 2 Ref .  [15] ,  Li  2 , B 2 a n d  0 2 present work. 
Values of ~h were computed by Eq.  (3) using values of Ref.  [9 ] .  

d Values for He 2 and Be 2 which have repulsive ground state potential curves were computed at 
R = 5 . 3  [13]  a n d  R = 3 . 5  [9 ]  a .u .  respectively. 

4. Inter-Relations Among the Bonding Criteria 

In the present section we apply the orbital force criterion in order to formulate 
conditions for the interconsistency of some of the bonding criteria discussed. 

4.l.Relation between the f~ and e i Criteria 

The Hartree-Fock approximation satisfies the Hellmann Feynman theorem 
in two different ways 
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1) From the Fock eigenvalue equation 

P(~i=ei(~i, where/?=/~ + G 

it follows that 

e', = < 4,,[dP = + < (10) 

which is the Hellmann-Feynman theorem with respect to the orbital energy. 
2) The N-electron Hartree-Fock wavefunction satisfies the Hellmann-Feynman 
theorem with respect to the total energy and the exact Hamiltonian 

dEHF/dR = < OnF]dft/dR]~uv> = V ni .r h = (Za/R2) �9 E f~ (11) 
i i 

The orbital force in the sense of Eq. (10) differs from the ith term of the total force 
in Eq. (1 l) by the interelectronic repulsion terms. Equation (11), which forms the 
basis for Bader's treatment [9], has the advantage of partitioning the total binding 
force into additive one-electron contributions. However, the orbital force in the 
sense of Eq. (10) is more closely related to Mulliken's criteria, stressing the effect 
of a single electron ionization on the binding characteristics. The difference 
between these binding criteria is an obvious consequence of the fact that EHF # 
F,, niel. This difference was pointed out by Goscinski [11]. The values of n i and d i 
presented in Table 1 indicate that the two electron term is of major significance. 
Specifically, the values off~ presented in Ref. [9] correspond to the orbitals 1% and 
lo-, both turning from antibinding in the lower half of the second row diatomics 
(Li 2 , B e, C2) into binding for N 2 , O 2 , F2. 

On the other hand, e i characterizes both 1% and la,, as antibinding for all these 
molecules. The decrease in the antibinding nature of these orbitals beyond N 2 is an 
expected consequence of their contraction. A further interesting feature is that 
2% is more binding than 2% is antibinding, and In u is more binding than lng is 
antibinding. This is also a consequence of the two electron term, as the comparison 
to the f /values indicates. 3% is binding on the basis of e i and antibinding on the 
basis off / .  

4.2. Relation between the e i and A R  e Criteria 

Denoting by U(R) the potential curve of the diatomic molecule AB, and by Ui(R ) 
that of the molecular ion AB + with an electron missing in orbital i we have in 
Koopmans'  approximation 

U,(R) = U ( R ) - e , ( R ) ;  R + =_Re+AR e 

Expanding UI(R ) about R e we get 

Ui(R~ + dR)  = U(R e -k A R ) - -  e~(R e ~- AR) 

i U ( R e )  - -  c'i(Re)} - -  A R .  e l (Re)  -[- (A R )  ~. i U " ( R e )  - f f i ' (Re)} /2  (12) 

Hence, trom 8UI(R e ~- AR)/SARlaR e = 0  we get 

A R  e ~ e l (Re) l [  V " ( R e )  - g;(Re) } (13) 
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At least i f A R  e is not too large, the positive curvature of  U i ( R )  at R e guarantees that 
A R  e and e~(Re) have the same sign, so that the force and equilibrium distance 
criteria coincide. This is, perhaps, not surprising because they both reflect local 
properties of  the chemical bond. 

A comparison between values of A R  e computed from Eq. (13) and ASCF or 
experimental results is carried out in Table 2, indicating the validity of this relation 
even with respect to the characterization of  l a o as antibonding, in second row 
diatomics. 

Table 2. C o m p a r i s o n  o f  K o o p m a n s '  AR e with  a c c u r a t e  

AR,, ( K o o p m a n s ' )  AR,  values  

H 2 0.32 0 .60 b 

l~176 N 2 - 0 . 0 7  - 0 . 0 5 "  

2or o Li a 0.71 1.14 ~ 

2or u N 2 - -0 .08  - - 0 . 0 4  b 

l n ,  N 2 0.12 0.15 b 

3o o N 2 0 .04 0 .04 b 

in o 0 2 - - 0 . 2 7  - - 0 . 1 6  b A S C F  [Refs .  16, 17]. 

b E x p e r i m e n t a l  [Refs .  18, 19]. 

4.3.  R e l a t i o n  b e t w e e n  the  A R  e a n d  A D  e Cr i t e r i a  

We shall show that the monotonicity of e(R) between R=min(Re,  R +) and 
R =oo  is a sufficient condition for the agreement between the A D  e and A R  e 

criteria. 

In addition to notation already introduced we shall define 

D e =  U ( : ~ ) -  U ( R e )  

and 

D + = U i ( c ~ ) -  Ui(R+e) 

Hence 

A D e = D + - D e = [ U i ( ~ )  - U ( ~ ) ]  - [ U i ( R  + ) - U(Re) ] = 

- ~ i ( : ~s )  - [ G ( R [  ) - U(G)]. 
We now consider the two possibilities : 

1) A R e < O  

By the result of  the previous section e ' (Re)<0 so that from the monotonicity 
requirement it follows that 

ei( O0 ) - -  gi( R e )  < O. 

Furthermore, 

U i ( R  + ) - U ( R  e ) = [ U i ( R  e) - U(Re)] - [ U i ( R  e ) - U i ( R  + )] = - 8i(Re) - -  A U i 

and, obviously, A U i > O. 
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Hence, 

A D e = - [~i (oo)  - ~i(Re) ] q- A Ui, 

which is certainly positive. 

2) dRe>O 

In this case we shall write 

Ui(Re + ) - g ( R e )  = [ U ( R  2 ) - ei(R+e )] - V ( R e )  = A U -  l;i(R+e ) 

Hence 

A D  e = [~i(Re +) - ei(~O)] -- A V 

Again, A U>  0 and ~,'i(Re)> 0 which, assuming ei(R)  to be a monotonic function of 
R implies ei(R+~ ) - ei(~176 < 0. It follows that A D e < 0. 

In conclusion, the only way that the thermochemical and the geometrical criteria 
can contradict one another is by a non-monotonicity in ei(R).  

A further complication can take place if the Har t ree-Fock approximation does 
not approach the correct dissociation limit. In this case the local criteria such as 
~ or A R  e are still valid and applicable within that approximation. However, the 
thermochemical criterion does not necessarily reflect the same type of behaviour 
simply because the argument of the present section becomes irrelevant. 

5. Conclusions 

Any attempt to partition the chemical bond into orbital contributions is an 
approximation and necessarily leads to difficulties of one kind or another. How- 
ever, an important class of binding criteria has been shown to be interconsistent 
with respect to their interpretations of chemical behaviour. One or another of 
these criteria may be easiest to apply in a particular context; Spectroscopic studies 
provide AR e values, Har t ree-Fock computations provide orbital energies, and 
thermochemistry provides A D  e values. One would certainly like to know whether 
interpretations made on the basis of one of these criteria are commensurable with 
the others. These internal consistencies, important  and useful as they may be, do 
not necessarily imply a fundamental superiority of this class of criteria. 

The extension of  the results presently discussed to polyatomic molecules requires 
consideration of some formal aspects, but seems largely feasible. In particular, the 
orbital force criterion is extended by replacing the orbital energy derivative with 
the appropriate gradient. 
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